首页> 外文OA文献 >Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces
【2h】

Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

机译:具有弹性界面的二维刚性周期块状材料的色散传播

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dispersive waves in two-dimensional blocky materials with periodic microstructure made\udup of equal rigid units, having polygonal centro-symmetric shape with mass and gyro- scopic \udinertia, connected with each other through homogeneous linear interfaces, have been analyzed. \udThe acoustic behavior of the resulting discrete Lagrangian model has been obtained through a \udFloquet–Bloch approach. From the resulting eigenproblem derived by the Euler–Lagrange equations for \udharmonic wave propagation, two acoustic branches and an optical branch are obtained in the \udfrequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been \udderived based on a second-order Taylor expansion of the generalized macro-displacement field. \udThe constitutive equations of the equivalent micropolar continuum have been obtained, with the \udpeculiarity that the posi- tive definiteness of the second-order symmetric tensor associated to the \udcurvature vector is not guaranteed and depends both on the ratio between the local tangent and \udnormal stiffness and on the block shape. The same results have been obtained through an ex- \udtended Hamiltonian derivation of the equations of motion for the equivalent continuum that is \udrelated to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the \udhermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is \udexact up to the second order in the norm of the wave vector with respect to the same matrix from \udthe discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to \udunderstand the reliability and the validity limits of the micropolar continuum model, some blocky \udpatterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the \udresults obtained in the examples, the obtained micropolar model turns out to be particularly \udaccurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic \uddimension of the block. Finally, in consideration that the positive definiteness of the second order \udelas- tic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of \udmotion has been investigated by considering the Legendre–Hadamard ellipticity conditions\udrequiring real values for the wave velocity.
机译:分析了具有周期性的微观结构的二维块状材料中的色散波,这些材料具有均匀的刚性单位,具有质心的多边形中心对称形状和陀螺的屈服点,它们通过均匀的线性界面相互连接。 \ ud通过\ udFloquet-Bloch方法获得了离散的拉格朗日模型的声学行为。从欧拉波传播的欧拉-拉格朗日方程得出的本征问题中,在\ ud频谱中获得了两个声学分支和一个光学分支。基于广义宏位移场的二阶泰勒展开,推导了近似于拉格朗日模型的微极连续谱模型。 \ ud得到了等效的微极连续体的本构方程,\ udpeculiarity不能保证与\ ud曲率向量相关的二阶对称张量的正确定性,并且取决于局部切线与\正常刚度和块状。通过对与希尔-曼德尔宏同质性条件相关的等效连续体的运动方程进行扩展的哈密顿推导,也获得了相同的结果。此外,还表明,相对于离散模型,控制微极模型中谐波传播本征问题的乌德勒密矩阵相对于同一矩阵在波矢量范数中达到二阶。为了了解某些相关块状材料的声学特性并了解微极性连续体模型的可靠性和有效性极限,我们分析了一些块状\ udpatterns:菱形和六角形组合以及流动粘结砌体。从实施例中获得的结果,所获得的微极性模型被证明是特别精确的,以描述波长大于块的特征尺寸的3-4倍的色散函数。最后,考虑到不能保证微极性模型的二阶\代数张量的正定性,我们通过考虑Legendre–Hadamard椭圆率条件\不需要真值来研究\ udmotion方程的双曲率。波速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号